Introducing Model Search: An Open Source Platform for Finding Optimal ML Models

Hanna Mazzawi

The success of a neural network (NN) often depends on how well it can generalize to various tasks. However, designing NNs that can generalize well is challenging because the research community’s understanding of how a neural network generalizes is currently somewhat limited: What does the appropriate neural network look like for a given problem? How deep should it be? Which types of layers should be used? Would LSTMs be enough or would Transformer layers be better? Or maybe a combination of the two? Would ensembling or distillation boost performance? These tricky questions are made even more challenging when considering machine learning (ML) domains where there may exist better intuition and deeper understanding than others.

In recent years, AutoML algorithms have emerged [e.g., 1, 2, 3] to help researchers find the right neural network automatically without the need for manual experimentation. Techniques like neural architecture search (NAS), use algorithms, like reinforcement learning (RL), evolutionary algorithms, and combinatorial search, to build a neural network out of a given search space. With the proper setup, these techniques have demonstrated they are capable of delivering results that are better than the manually designed counterparts. But more often than not, these algorithms are compute heavy, and need thousands of models to train before converging. Moreover, they explore search spaces that are domain specific and incorporate substantial prior human knowledge that does not transfer well across domains. As an example, in image classification, the traditional NAS searches for two good building blocks (convolutional and downsampling blocks), that it arranges following traditional conventions to create the full network.

To overcome these shortcomings and to extend access to AutoML solutions to the broader research community, we are excited to announce the open source release of Model Search, a platform that helps researchers develop the best ML models, efficiently and automatically. Instead of focusing on a specific domain, Model Search is domain agnostic, flexible and is capable of finding the appropriate architecture that best fits a given dataset and problem, while minimizing coding time, effort and compute resources. It is built on Tensorflow, and can run either on a single machine or in a distributed setting.

Overview

The Model Search system consists of multiple trainers, a search algorithm, a transfer learning algorithm and a database to store the various evaluated models. The system runs both training and evaluation experiments for various ML models (different architectures and training techniques) in an adaptive, yet asynchronous, fashion. While each trainer conducts experiments independently, all trainers share the knowledge gained from their experiments. At the beginning of every cycle, the search algorithm looks up all the completed trials and uses beam search to decide what to try next. It then invokes mutation over one of the best architectures found thus far and assigns the resulting model back to a trainer.

Artificial Intelligence
Model Search schematic illustrating the distributed search and ensembling. Each trainer runs independently to train and evaluate a given model. The results are shared with the search algorithm, which it stores. The search algorithm then invokes mutation over one of the best architectures and then sends the new model back to a trainer for the next iteration. S is the set of training and validation examples and A are all the candidates used during training and search.

Neural network micro architecture blocks that work well, e.g., a ResNet Block.

Because the Model Search framework is built on Tensorflow, blocks can implement any function that takes a tensor as an input. For example, imagine that one wants to introduce a new search space built with a selection of micro architectures. The framework will take the newly defined blocks and incorporate them into the search process so that algorithms can build the best possible neural network from the components provided. The blocks provided can even be fully defined neural networks that are already known to work for the problem of interest. In that case, Model Search can be configured to simply act as a powerful ensembling machine.

The search algorithms implemented in Model Search are adaptive, greedy and incremental, which makes them converge faster than RL algorithms. They do however imitate the “explore & exploit” nature of RL algorithms by separating the search for a good candidate (explore step), and boosting accuracy by ensembling good candidates that were discovered (exploit step). The main search algorithm adaptively modifies one of the top k performing experiments (where k can be specified by the user) after applying random changes to the architecture or the training technique (e.g., making the architecture deeper).

An example of an evolution of a network over many experiments. Each color represents a different type of architecture block. The final network is formed via mutations of high performing candidate networks, in this case adding depth.

To further improve efficiency and accuracy, transfer learning is enabled between various internal experiments. Model Search does this in two ways — via knowledge distillation or weight sharing. Knowledge distillation allows one to improve candidates’ accuracies by adding a loss term that matches the high performing models’ predictions in addition to the ground truth. Weight sharing, on the other hand, bootstraps some of the parameters (after applying mutation) in the network from previously trained candidates by copying suitable weights from previously trained models and randomly initializing the remaining ones. This enables faster training, which allows opportunities to discover more (and better) architectures.

Experimental Results

Model Search improves upon production models with minimal iterations. In a recent paper, we demonstrated the capabilities of Model Search in the speech domain by discovering a model for keyword spotting and language identification. Over fewer than 200 iterations, the resulting model slightly improved upon internal state-of-the-art production models designed by experts in accuracy using ~130K fewer trainable parameters (184K compared to 315K parameters).

Model accuracy given iteration in our system compared to the previous production model for keyword spotting, a similar graph can be found for language identification in the linked paper.

We also applied Model Search to find an architecture suitable for image classification on the heavily explored CIFAR-10 imaging dataset. Using a set known convolution blocks, including convolutions, resnet blocks (i.e., two convolutions and a skip connection), NAS-A cells, fully connected layers, etc., we observed that we were able to quickly reach a benchmark accuracy of 91.83 in 209 trials (i.e., exploring only 209 models). In comparison, previous top performers reached the same threshold accuracy in 5807 trials for the NasNet algorithm (RL), and 1160 for PNAS (RL + Progressive).

Conclusion

We hope the Model Search code will provide researchers with a flexible, domain-agnostic framework for ML model discovery. By building upon previous knowledge for a given domain, we believe that this framework is powerful enough to build models with the state-of-the-art performance on well studied problems when provided with a search space composed of standard building blocks.

Acknowledgements

Special thanks to all code contributors to the open sourcing and the paper: Eugen Ehotaj, Scotty Yak, Malaika Handa, James Preiss, Pai Zhu, Aleks Kracun, Prashant Sridhar, Niranjan Subrahmanya, Ignacio Lopez Moreno, Hyun Jin Park, and Patrick Violette.

Mastering Atari with Discrete World Models

Danijar Hafner

Deep reinforcement learning (RL) enables artificial agents to improve their decisions over time. Traditional model-free approaches learn which of the actions are successful in different situations by interacting with the environment through a large amount of trial and error. In contrast, recent advances in deep RL have enabled model-based approaches to learn accurate world models from image inputs and use them for planning. World models can learn from fewer interactions, facilitate generalization from offline data, enable forward-looking exploration, and allow reusing knowledge across multiple tasks.

Despite their intriguing benefits, existing world models (such as SimPLe) have not been accurate enough to compete with the top model-free approaches on the most competitive reinforcement learning benchmarks — to date, the well-established Atari benchmark requires model-free algorithms, such as DQN, IQN, and Rainbow, to reach human-level performance. As a result, many researchers have focused instead on developing task-specific planning methods, such as VPN and MuZero, which learn by predicting sums of expected task rewards. However, these methods are specific to individual tasks and it is unclear how well they would generalize to new tasks or learn from unsupervised datasets. Similar to the recent breakthrough of unsupervised representation learning in computer vision [1, 2], world models aim to learn patterns in the environment that are more general than any particular task to later solve tasks more efficiently.

Today, in collaboration with DeepMind and the University of Toronto, we introduce DreamerV2, the first RL agent based on a world model to achieve human-level performance on the Atari benchmark. It constitutes the second generation of the Dreamer agent that learns behaviors purely within the latent space of a world model trained from pixels. DreamerV2 relies exclusively on general information from the images and accurately predicts future task rewards even when its representations were not influenced by those rewards. Using a single GPU, DreamerV2 outperforms top model-free algorithms with the same compute and sample budget.

Gamer normalized median score across the 55 Atari games after 200 million steps. DreamerV2 substantially outperforms previous world models. Moreover, it exceeds top model-free agents within the same compute and sample budget.
Behaviors learned by DreamerV2 for some of the 55 Atari games. These videos show images from the environment. Video predictions are shown below in the blog post.
An Abstract Model of the World Just like its predecessor, DreamerV2 learns a world model and uses it to train actor-critic behaviors purely from predicted trajectories. The world model automatically learns to compute compact representations of its images that discover useful concepts, such as object positions, and learns how these concepts change in response to different actions. This lets the agent generate abstractions of its images that ignore irrelevant details and enables massively parallel predictions on a single GPU. During 200 million environment steps, DreamerV2 predicts 468 billion compact states for learning its behavior.

DreamerV2 builds upon the Recurrent State-Space Model (RSSM) that we introduced for PlaNet and was also used for DreamerV1. During training, an encoder turns each image into a stochastic representation that is incorporated into the recurrent state of the world model. Because the representations are stochastic, they do not have access to perfect information about the images and instead extract only what is necessary to make predictions, making the agent robust to unseen images. From each state, a decoder reconstructs the corresponding image to learn general representations. Moreover, a small reward network is trained to rank outcomes during planning. To enable planning without generating images, a predictor learns to guess the stochastic representations without access to the images from which they were computed.

Learning process of the world model used by DreamerV2. The world model maintains recurrent states (h1–h3) that receive actions (a1–a2) and incorporate information about the images (x1–x3) via stochastic representations (z1–z3). A predictor guesses the representations as (ẑ1–ẑ3) without access to the images from which they were generated.

Importantly, DreamerV2 introduces two new techniques to RSSM that lead to a substantially more accurate world model for learning successful policies. The first technique is to represent each image with multiple categorical variables instead of the Gaussian variables used by PlaNet, DreamerV1, and many more world models in the literature [1, 2, 3, 4, 5]. This leads the world model to reason about the world in terms of discrete concepts and enables more accurate predictions of future representations.

The encoder turns each image into 32 distributions over 32 classes each, the meanings of which are determined automatically as the world model learns. The one-hot vectors sampled from these distributions are concatenated to a sparse representation that is passed on to the recurrent state. To backpropagate through the samples, we use straight-through gradients that are easy to implement using automatic differentiation. Representing images with categorical variables allows the predictor to accurately learn the distribution over the one-hot vectors of the possible next images. In contrast, earlier world models that use Gaussian predictors cannot accurately match the distribution over multiple Gaussian representations for the possible next images.

Multiple categoricals that represent possible next images can be accurately predicted by a categorical predictor, whereas a Gaussian predictor is not flexible enough to accurately predict multiple possible Gaussian representations.

The second new technique of DreamerV2 is KL balancing. Many previous world models use the ELBO objective that encourages accurate reconstructions while keeping the stochastic representations (posteriors) close to their predictions (priors) to regularize the amount of information extracted from each image and facilitate generalization. Because the objective is optimized end-to-end, the stochastic representations and their predictions can be made more similar by bringing either of the two towards the other. However, bringing the representations towards their predictions can be problematic when the predictor is not yet accurate. KL balancing lets the predictions move faster toward the representations than vice versa. This results in more accurate predictions, a key to successful planning.

Long-term video predictions of the world model for holdout sequences. Each model receives 5 frames as input (not shown) and then predicts 45 steps forward given only actions. The video predictions are only used to gain insights into the quality of the world model. During planning, only compact representations are predicted, not images.

Measuring Atari Performance
DreamerV2 is the first world model that enables learning successful behaviors with human-level performance on the well-established and competitive Atari benchmark. We select the 55 games that many previous studies have in common and recommend this set of games for future work. Following the standard evaluation protocol, the agents are allowed 200M environment interactions using an action repeat of 4 and sticky actions (25% chance that an action is ignored and the previous action is repeated instead). We compare to the top model-free agents IQN and Rainbow, as well as to the well-known C51 and DQN agents implemented in the Dopamine framework.

Different standards exist for aggregating the scores across the 55 games. Ideally, a new algorithm would perform better under all conditions. For all four aggregation methods, DreamerV2 indeed outperforms all compared model-free algorithms while using the same computational budget.

DreamerV2 outperforms the top model-free agents according to four methods for aggregating scores across the 55 Atari games. We introduce and recommend the Clipped Record Mean (right-most plot) as an informative and robust performance metric.

The first three aggregation methods were previously proposed in the literature. We identify important drawbacks in each and recommend a new aggregation method, the clipped record mean to overcome their drawbacks.

  • Gamer Median. Most commonly, scores for each game are normalized by the performance of a human gamer that was assessed for the DQN paper and the median of the normalized scores of all games is reported. Unfortunately, the median ignores the scores of many simpler and harder games.
  • Gamer Mean. The mean takes the scores for all games into account but is mainly influenced by a small number of games where the human gamer performed poorly. This makes it easy for an algorithm to achieve large normalized scores on some games (e.g., James Bond, Video Pinball) that then dominate the mean.
  • Record Mean. Prior work recommends normalization based on the human world record instead, but such a metric is still overly influenced by a small number of games where it is easy for the artificial agents to outscore the human record.
  • Clipped Record Mean. We introduce a new metric that normalizes scores by the world record and clips them to not exceed the record. This yields an informative and robust metric that takes the performance on all games into account to an approximately equal amount.

While many current algorithms exceed the human gamer baseline, they are still quite far behind the human world record. As shown in the right-most plot above, DreamerV2 leads by achieving 25% of the human record on average across games. Clipping the scores at the record line lets us focus our efforts on developing methods that come closer to the human world record on all of the games rather than exceeding it on just a few games.

What matters and what doesn’t
To gain insights into the important components of DreamerV2, we conduct an extensive ablation study. Importantly, we find that categorical representations offer a clear advantage over Gaussian representations despite the fact that Gaussians have been used extensively in prior works. KL balancing provides an even more substantial advantage over the KL regularizer used by most generative models.

By preventing the image reconstruction or reward prediction gradients from shaping the model states, we study their importance for learning successful representations. We find that DreamerV2 relies completely on universal information from the high-dimensional input images and its representations enable accurate reward predictions even when they were not trained using information about the reward. This mirrors the success of unsupervised representation learning in the computer vision community.

Atari performance for various ablations of DreamerV2 (Clipped Record Mean). Categorical representations, KL balancing, and learning about the images are crucial for the success of DreamerV2. Using reward information, that is specific to narrow tasks, offers no additional benefits for learning the world model.

Conclusion

We show how to learn a powerful world model to achieve human-level performance on the competitive Atari benchmark and outperform the top model-free agents. This result demonstrates that world models are a powerful approach for achieving high performance on reinforcement learning problems and are ready to use for practitioners and researchers. We see this as an indication that the success of unsupervised representation learning in computer vision [1, 2] is now starting to be realized in reinforcement learning in the form of world models. An unofficial implementation of DreamerV2 is available on Github and provides a productive starting point for future research projects. We see world models that leverage large offline datasets, long-term memory, hierarchical planning, and directed exploration as exciting avenues for future research.

Acknowledgements

This project is a collaboration with Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. We further thank everybody on the Brain Team and beyond who commented on our paper draft and provided feedback at any point throughout the project.

Rearranging the Visual World

Andy Zeng and Pete Florence

Rearranging objects (such as organizing books on a bookshelf, moving utensils on a dinner table, or pushing piles of coffee beans) is a fundamental skill that can enable robots to physically interact with our diverse and unstructured world. While easy for people, accomplishing such tasks remains an open research challenge for embodied machine learning (ML) systems, as it requires both high-level and low-level perceptual reasoning. For example, when stacking a pile of books, one might consider where the books should be stacked, and in which order, while ensuring that the edges of the books align with each other to form a neat pile.

Across many application areas in ML, simple differences in model architecture can exhibit vastly different generalization properties. Therefore, one might ask whether there are certain deep network architectures that favor simple underlying elements of the rearrangement problem. Convolutional architectures, for example, are common in computer vision as they encode translational invariance, yielding the same response even if an image is shifted, while Transformer architectures are common in language processing because they exploit self-attention to capture long-range contextual dependencies. In robotics applications, one common architectural element is to use object-centric representations such as poses, keypoints, or object descriptors inside learned models, but these representations require additional training data (often manually annotated) and struggle to describe difficult scenarios such as deformables (e.g., playdough), fluids (honey), or piles of stuff (chopped onions).

Today, we present the Transporter Network, a simple model architecture for learning vision-based rearrangement tasks, which appeared as a publication and plenary talk during CoRL 2020. Transporter Nets use a novel approach to 3D spatial understanding that avoids reliance on object-centric representations, making them general for vision-based manipulation but far more sample efficient than benchmarked end-to-end alternatives. As a consequence, they are fast and practical to train on real robots. We are also releasing an accompanying open-source implementation of Transporter Nets together with Ravens, our new simulated benchmark suite of ten vision-based manipulation tasks.

Transporter Networks: Rearranging the Visual World for Robotic Manipulation
The key idea behind the Transporter Network architecture is that one can formulate the rearrangement problem as learning how to move a chunk of 3D space. Rather than relying on an explicit definition of objects (which is bound to struggle at capturing all edge cases), 3D space is a much broader definition for what could serve as the atomic units being rearranged, and can broadly encompass an object, part of an object, or multiple objects, etc. Transporter Nets leverage this structure by capturing a deep representation of the 3D visual world, then overlaying parts of it on itself to imagine various possible rearrangements of 3D space. It then chooses the rearrangements that best match those it has seen during training (e.g., from expert demonstrations), and uses them to parameterize robot actions. This formulation allows Transporter Nets to generalize to unseen objects and enables them to better exploit geometric symmetries in the data, so that they can extrapolate to new scene configurations. Transporter Nets are applicable to a wide variety of rearrangement tasks for robotic manipulation, expanding beyond our earlier models, such as affordance-based manipulation and TossingBot, that focus only on grasping and tossing.

Transporter Nets capture a deep representation of the visual world, then overlay parts of it on itself to imagine various possible rearrangements of 3D space to find the best one and inform robot actions.

Ravens Benchmark
To evaluate the performance of Transporter Nets in a consistent environment for fair comparisons to baselines and ablations, we developed Ravens, a benchmark suite of ten simulated vision-based rearrangement tasks. Ravens features a Gym API with a built-in stochastic oracle to evaluate the sample efficiency of imitation learning methods. Ravens avoids assumptions that cannot transfer to a real setup: observation data contains only RGB-D images and camera parameters; actions are end effector poses (transposed into joint positions with inverse kinematics).

Experiments on these ten tasks show that Transporter Nets are orders of magnitude more sample efficient than other end-to-end methods, and are capable of achieving over 90% success on many tasks with just 100 demonstrations, while the baselines struggle to generalize with the same amount of data. In practice, this makes collecting enough demonstrations a more viable option for training these models on real robots (which we show examples of below).

Our new Ravens benchmark includes ten simulated vision-based manipulation tasks, including pushing and pick-and-place, for which experiments show that Transporter Nets are orders of magnitude more sample efficient than other end-to-end methods. Ravens features a Gym API with a built-in stochastic oracle to evaluate the sample efficiency of imitation learning methods.

Our new Ravens benchmark includes ten simulated vision-based manipulation tasks, including pushing and pick-and-place, for which experiments show that Transporter Nets are orders of magnitude more sample efficient than other end-to-end methods. Ravens features a Gym API with a built-in stochastic oracle to evaluate the sample efficiency of imitation learning methods.

Highlights
Given 10 example demonstrations, Transporter Nets can learn pick and place tasks such as stacking plates (surprisingly easy to misplace!), multimodal tasks like aligning any corner of a box to a marker on the tabletop, or building a pyramid of blocks.

By leveraging closed-loop visual feedback, Transporter Nets have the capacity to learn various multi-step sequential tasks with a modest number of demonstrations: such as moving disks for Tower of Hanoi, palletizing boxes, or assembling kits of new objects not seen during training. These tasks have considerably “long horizons”, meaning that to solve the task the model must correctly sequence many individual choices. Policies also tend to learn emergent recovery behaviors.

One surprising thing about these results was that beyond just perception, the models were starting to learn behaviors that resemble high-level planning. For example, to solve Towers of Hanoi, the models have to pick which disk to move next, which requires recognizing the state of the board based on the current visible disks and their positions. With a box-palletizing task, the models must locate the empty spaces of the pallet, and identify how new boxes can fit into those voids. Such behaviors are exciting because they suggest that with all the baked-in invariances, the model can focus its capacity on learning the more high-level patterns in manipulation.

Transporter Nets can also learn tasks that use any motion primitive defined by two end effector poses, such as pushing piles of small objects into a target set, or reconfiguring a deformable rope to connect the two end-points of a 3-sided square. This suggests that rigid spatial displacements can serve as useful priors for nonrigid ones.

Conclusion

Transporter Nets bring a promising approach to learning vision-based manipulation, but are not without limitations. For example, they can be susceptible to noisy 3D data, we have only demonstrated them for sparse waypoint-based control with motion primitives, and it remains unclear how to extend them beyond spatial action spaces to force or torque-based actions. But overall, we are excited about this direction of work, and we hope that it provides inspiration for extensions beyond the applications we’ve discussed. For more details, please check out our paper.

Acknowledgements

This research was done by Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, and Johnny Lee, with special thanks to Ken Goldberg, Razvan Surdulescu, Daniel Seita, Ayzaan Wahid, Vincent Vanhoucke, Anelia Angelova, Kendra Byrne, for helpful feedback on writing; Sean Snyder, Jonathan Vela, Larry Bisares, Michael Villanueva, Brandon Hurd for operations and hardware support; Robert Baruch for software infrastructure, Jared Braun for UI contributions; Erwin Coumans for PyBullet advice; Laura Graesser for video narration.

3D Scene Understanding with TensorFlow 3D

Alireza Fathi

The growing ubiquity of 3D sensors (e.g., Lidar, depth sensing cameras and radar) over the last few years has created a need for scene understanding technology that can process the data these devices capture. Such technology can enable machine learning (ML) systems that use these sensors, like autonomous cars and robots, to navigate and operate in the real world, and can create an improved augmented reality experience on mobile devices. The field of computer vision has recently begun making good progress in 3D scene understanding, including models for mobile 3D object detection, transparent object detection, and more, but entry to the field can be challenging due to the limited availability tools and resources that can be applied to 3D data.

In order to further improve 3D scene understanding and reduce barriers to entry for interested researchers, we are releasing TensorFlow 3D (TF 3D), a highly modular and efficient library that is designed to bring 3D deep learning capabilities into TensorFlow. TF 3D provides a set of popular operations, loss functions, data processing tools, models and metrics that enables the broader research community to develop, train and deploy state-of-the-art 3D scene understanding models.

TF 3D contains training and evaluation pipelines for state-of-the-art 3D semantic segmentation, 3D object detection and 3D instance segmentation, with support for distributed training. It also enables other potential applications like 3D object shape prediction, point cloud registration and point cloud densification. In addition, it offers a unified dataset specification and configuration for training and evaluation of the standard 3D scene understanding datasets. It currently supports the Waymo Open, ScanNet, and Rio datasets. However, users can freely convert other popular datasets, such as NuScenes and Kitti, into a similar format and use them in the pre-existing or custom created pipelines, and can leverage TF 3D for a wide variety of 3D deep learning research and applications, from quickly prototyping and trying new ideas to deploying a real-time inference system.

An example output of the 3D object detection model in TF 3D on a frame from Waymo Open Dataset is shown on the left. An example output of the 3D instance segmentation model on a scene from ScanNet dataset is shown on the right.

Here, we will present the efficient and configurable sparse convolutional backbone that is provided in TF 3D, which is the key to achieving state-of-the-art results on various 3D scene understanding tasks. Furthermore, we will go over each of the three pipelines that TF 3D currently supports: 3D semantic segmentation, 3D object detection and 3D instance segmentation.

3D Sparse Convolutional Network
The 3D data captured by sensors often consists of a scene that contains a set of objects of interest (e.g. cars, pedestrians, etc.) surrounded mostly by open space, which is of limited (or no) interest. As such, 3D data is inherently sparse. In such an environment, standard implementation of convolutions would be computationally intensive and consume a large amount of memory. So, in TF 3D we use submanifold sparse convolution and pooling operations, which are designed to process 3D sparse data more efficiently. Sparse convolutional models are core to the state-of-the-art methods applied in most outdoor self-driving (e.g. Waymo, NuScenes) and indoor benchmarks (e.g. ScanNet).

We also use various CUDA techniques to speed up the computation (e.g., hashing, partitioning / caching the filter in shared memory, and using bit operations). Experiments on the Waymo Open dataset shows that this implementation is around 20x faster than a well-designed implementation with pre-existing TensorFlow operations.

TF 3D then uses the 3D submanifold sparse U-Net architecture to extract a feature for each voxel. The U-Net architecture has proven to be effective by letting the network extract both coarse and fine features and combining them to make the predictions. The U-Net network consists of three modules, an encoder, a bottleneck, and a decoder, each of which consists of a number of sparse convolution blocks with possible pooling or un-pooling operations.

A 3D sparse voxel U-Net architecture. Note that a horizontal arrow takes in the voxel features and applies a submanifold sparse convolution to it. An arrow that is moving down performs a submanifold sparse pooling. An arrow that is moving up will gather back the pooled features, concatenate them with the features coming from the horizontal arrow, and perform a submanifold sparse convolution on the concatenated features.

The sparse convolutional network described above is the backbone for the 3D scene understanding pipelines that are offered in TF 3D. Each of the models described below uses this backbone network to extract features for the sparse voxels, and then adds one or multiple additional prediction heads to infer the task of interest. The user can configure the U-Net network by changing the number of encoder / decoder layers and the number of convolutions in each layer, and by modifying the convolution filter sizes, which enables a wide range of speed / accuracy tradeoffs to be explored through the different backbone configurations

3D Semantic Segmentation

The 3D semantic segmentation model has only one output head for predicting the per-voxel semantic scores, which are mapped back to points to predict a semantic label per point.

3D semantic segmentation of an indoor scene from ScanNet dataset.

3D Instance Segmentation
In 3D instance segmentation, in addition to predicting semantics, the goal is to group the voxels that belong to the same object together. The 3D instance segmentation algorithm used in TF 3D is based on our previous work on 2D image segmentation using deep metric learning. The model predicts a per-voxel instance embedding vector as well as a semantic score for each voxel. The instance embedding vectors map the voxels to an embedding space where voxels that correspond to the same object instance are close together, while those that correspond to different objects are far apart. In this case, the input is a point cloud instead of an image, and it uses a 3D sparse network instead of a 2D image network. At inference time, a greedy algorithm picks one instance seed at a time, and uses the distance between the voxel embeddings to group them into segments.

3D Object Detection
The 3D object detection model predicts per-voxel size, center, and rotation matrices and the object semantic scores. At inference time, a box proposal mechanism is used to reduce the hundreds of thousands of per-voxel box predictions into a few accurate box proposals, and then at training time, box prediction and classification losses are applied to per-voxel predictions. We apply a Huber loss on the distance between predicted and the ground-truth box corners. Since the function that estimates the box corners from its size, center and rotation matrix is differentiable, the loss will automatically propagate back to those predicted object properties. We use a dynamic box classification loss that classifies a box that strongly overlaps with the ground-truth as positive and classifies the non-overlapping boxes as negative.

Our 3D object detection results on ScanNet dataset.

In our recent paper, “DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes”, we describe in detail the single-stage weakly supervised learning algorithm used for object detection in TF 3D. In addition, in a follow up work, we extended the 3D object detection model to leverage temporal information by proposing a sparse LSTM-based multi-frame model. We go on to show that this temporal model outperforms the frame-by-frame approach by 7.5% in the Waymo Open dataset.

Artificial Intelligence

The 3D object detection and shape prediction model introduced in the DOPS paper. A 3D sparse U-Net is used to extract a feature vector for each voxel. The object detection module uses these features to propose 3D boxes and semantic scores. At the same time, the other branch of the network predicts a shape embedding that is used to output a mesh for each object.

Ready to Get Started?
We’ve certainly found this codebase to be useful for our 3D computer vision projects, and we hope that you will as well. Contributions to the codebase are welcome and please stay tuned for our own further updates to the framework.

Acknowledgements

The release of the TensorFlow 3D codebase and model has been the result of widespread collaboration among Google researchers with feedback and testing from product groups. In particular we want to highlight the core contributions by Alireza Fathi and Rui Huang (work performed while at Google), with special additional thanks to Guangda Lai, Abhijit Kundu, Pei Sun, Thomas Funkhouser, David Ross, Caroline Pantofaru, Johanna Wald, Angela Dai and Matthias Niessner.